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ABSTRACT Metastable configurations in open computa-
tional systems with local minima in their optimality functions
are shown to be very long lived, which makes them effectively
stable. When rare transitions to the global optimum do occur,
they happen extremely fast, in analogy to models of punctuated
evolution in biology. These results are obtained by introducing
a thermodynamic-like formalism that allows for a simple
analysis of nonlinear game dynamics in computational ecosys-
tems.

Open computational systems provide an important example
of distributed computation that is both concurrent and asyn-
chronous (for a collection of articles dealing with the subject,
see ref. 1). Their slow emergence on the computing scene
creates a number of interesting problems, which range from
their programmability to understanding their global behavior
in terms of local properties. In addition, the ability of
processes to spawn others in remote computers and servers
of the system, their competition for resources, and the lack
of global controls makes for a community of computational
agents that is reminiscent of biological and social organiza-
tions. These computational ecosystems are made up of
processes that interact with each other by passing messages
that embody arbitrary computations, making their interac-
tions effectively infinite in their range.
The existence of computational ecologies brings to mind

the spontaneous appearance of organized behavior in bio-
logical and social systems (2t, 4), where agents can engage in
cooperating strategies while working on the solution of
particular problems. Such a phenomenon was found to
emerge in the proverbial "prisoner's dilemma" when two-
agent' interactions with memory were allowed. Recently,
spontaneous organization has also been shown to exist in
open computational systems when agents can choose among
many possible strategies while collaborating in the solution of
computational tasks (5). Their dynamic behavior in the
presence of delays and nonlinearities, however, while leading
to stable attractors, excludes at times the possibility ofhaving
evolutionary stable strategies (ESS).
There are by now a number of distributed computational

systems that exhibit many of the above characteristics and
that offer increased performance when compared with tra-
ditional operating systems. ENTERPRISE, for example, is a
market-like scheduler where independent processes or
agents are allocated at run time among remote idle processors
through a bidding mechanism (6). The system has been
shown to provide substantial improvements over standard
schedulers, even in the face of large delays and inaccurate
estimates of processing times. Another, more sophisticated
proposal includes algorithms that allow for both processor
scheduling as an auction process and for distributed garbage
collection through which unreferenced loops can be collected
across trust boundaries (7).

An interesting problem in open systems is posed by the
appearance of sudden changes in the nature of the network in
which they are embedded. One may envision a computational
ecology where agents have reached a fixed point consisting
of mixed strategies, which are used in the solution of a
complex and lengthy computational problem. The rapid
availability of newer and/or faster computers or resources to
the system can then introduce a different optimality criterion,
because a new strategy mix may now increase the agent's
performance in the solution of the problem. If the system is
adaptable, one would expect it to move from the once nearly
optimal strategy mix to the new one in the course of time.

In many situations of interest, however, the use of better
computational resources in a network becomes economically
feasible only when many processes have access to them. This
introduces an interesting dilemma, since local changes in the
previous strategy mix lower the performance of the system,
thus preventing the appearance of spontaneous adaptive
behavior. One may then ask the following question: given a
bistable situation in a computational system, with one having
a higher overall payoff than the other, how does the overall
system relax towards the globally optimal one?

This paper presents a general solution to this problem. It
does so by' introducing a formalism analogous to statistical
thermodynamics. By constructing a simple optimality func-
tion whose minima give the local fixed points of the system,
we explicitly calculate the time evolution of a system that
contains several basins of attraction for the game dynamics.
We then show that, under fairly general conditions, the time
it takes for a system to cross over from a local fixed point that
is not optimal to a global one that is can grow exponentially
with the number of agents in the system. This implies that
metastable configurations in the adaptive landscape become
effectively stable for large numbers of agents. When such a
crossover does occur, however, it happens extremely fast
(logarithmically in the number of agents), giving rise to a
phenomenon analogous to punctuated equilibria in biology
(8). A corollary of these results is that open systems with
metastable strategies cannot spontaneously adapt to chang-
ing constraints, thereby necessitating the introduction of
coordinating agents in order to do so. Finally, we comment
on the applicability of these results to biological and social
organizations.

Consider a collection ofN computational agents capable of
asynchronously choosing among several possible strategies,
which, for the sake of simplicity in the presentation, we take
to be two. § We will denote by Gl(nl) and G2(n2) the respective
density-dependent payoffs, where ni is the number of agents
engaged in strategy i. To what extent agents choose given
strategies depends on their perceived payoffs because, al-
though there are many situations when cooperation between
processes increases the speed at which a given problem is
solved (thus increasing the payoff), crowding of resources by

Abbreviation: ESS, evolutionary stable strategies.
tA more recent account of evolutionary game theory is presented in
ref. 3.
§The formalism can be easily generalized to many more strategies, as
shown in ref. 5.
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many agents can reduce the payoff. A simple, but not
necessarily unique, way of modeling competition between
cooperation and crowding is by introducing a density-
dependent payoff function with the form

G(n) = P + C -) N) [1]

where P is the payoff accrued in the absence of cooperation
between agents and C/N is the extra benefit to be accrued
due to cooperation. R characterizes the total capacity of a
finite computational resource, and F/N is the amount by
which the payoff decreases as each additional agent chooses
to use the strategy.
By analogy with thermodynamics, we introduce an opti-

mality function fl(p, A), formally equivalent to a free energy,
with a continuous parameter (O < P < 00) playing the same
role as that of an inverse temperature, which determines the
amount of imperfect knowledge that individual processes
have when making a choice among strategies. Perfect knowl-
edge implies P = oo, whereas maximal uncertainty is denoted
by 83 = 0. The variable a = 2n/N - 1 is the deviation from
an even choice among the two strategies. When all agents
engage in one particular strategy n = 0, N and tk = +1, -1,
whereas the symmetric case corresponds to half of the agents
choosing each strategy (i.e., n = N/2 and ,4 = 0). The minima
ofthe function ft determine the locally stable strategies of the
system. Thus, if we call g the derivative of fl with respect to
,u (i.e., g = dfQ/d.t), the fixed points of the dynamics are
determined by the condition

g(/3, g) = 0, [2]

with g'(3, A) > 0. In order to make use of this formalism, we
need an explicit form for the dependence of the function
fl(,, At) in terms of the payoffs of the system and the
uncertainty factor/. Let us denote by 71(P8, t) and 712(/, tO
the probabilities that an agent perceives strategy 1 to be
better than strategy 2 and vice versa. In terms of the
corresponding payoffs G1 and G2, one can write them as

rn(%, /) = D exp{L3[G1(t) - G2(p0]} [3a]

and

where the transition matrices, T(mln), which determine the
rate at which agents switch from one strategy to the other
(i.e., from strategy m to strategy n), are given by ref. 5:

TP(n~n + 1) = a (N - n)r,1(p, 4);
N

TS(n + l n) =-N (n + 1)712(f3, tU) [6]
N

The prefactor a/N, which denotes the probability per unit time
that an agent decides to evaluate the possible strategies, plays
a similar role to that ofan attempt frequency in the rate theory
of thermodynamic processes.
We will now show that the equilibrium probability distri-

bution, Pe(,i), defined by having P,+1 = P. = Pe, is given by

Pe(,u) = C exp[-Nfl(p, ,)], [7]

with fl the optimality function defined above [Q = J| ' g(3,
,4)dg] and C a normalization constant. It can be easily
established that the condition dPe(/J)/dIL = 0 is equivalent to
Eq. 2, with the function g determined by Eq. 4. In other
words, the probability distribution has sharp maxima at the
zeroes of g(p3, g). This can be seen from the stationary
solution of the master equation, Eq. 5, which verifies the
equality

Pe(n + 1)Ts(n + 11n) = Pe(n)Tp(nln + 1). [8]
The solution of Eq. 8, together with Eq. 6 is, up to a

normalization factor, given by

P,(n) o [Ni [ 711(p, (r - 1)/N)
r=1 712(/3, (r - 1)/N)

[9]

which, by taking logarithms and using Stirling's approxima-
tion, can be written (to leading order in N) in the same form
as Eq. 7. This completes our proof.
From these results it follows that we have converted the

problem of finding the long time solution of the dynamical
problem to that of finding the minima of fl, a much simpler
procedure that directly determines the ESS. To establish how
the system flows towards the actual minima of fQ, we notice
that the time evolution of the fraction of agents in a given
strategy mix is given by ref. 5,

7M2(O, U) = D exp{J[G2(pU) - Gl(4)]}, [3b]

where D is a small proportionality constant.O
With these definitions, the connection between the func-

tion g and the payoff function G is given by

g(A3, A) = (1 + O)M2(/3, AU) - (1 - On)l(P, 0U). [4]

In order to demonstrate that the zeroes of the g function do
indeed generate the stable equilibria of the system, we need
to consider the dynamics of the system, which is governed by
an equation that determines how the probability of having n
agents engaged in strategy 1 at time t, P,(n), evolves in time.
It is given by the master equation

n+1

P,+1(n) = E P,(mln)T(mln), [5]
m=n-1

$This is a plausible assumption for a wide class of payoff functions,
and it gives the same results as those obtained with an error function
in ref. 5. Notice that in the case where the qs satisfy the normal-
ization condition ql + 712 = 1 the corresponding equations take the
form 711,2 = 1/2{1 + tanh [GCl(,u) - GA0u)}

dl-L -ag(/3, g),
dt

[10]

so that if g(,t) has only one zero (i.e., il has only a global
minimum), the system will relax exponentially to that value
of g, with relaxation time 1/a. Thus, in adaptive systems,
changes in the overall constraints of the system, which are
reflected in a shift in the value of the il minimum, are
followed exponentially fast. If, on the other hand, g(,u) has
several zeroes, for short times the system will relax to the
closest zero of g for which g'(,u) > 0. At longer times,
however, the system will reach the global minimum of fl but
with a slower relaxation rate, which we calculate below.
The usefulness of this formalism becomes apparent when

considering problems with complicated tradeoffs between
cooperation and resource utilization. Consider for the sake of
simplicity a heterogeneous system with two types of re-
sources, each of which generates a payoffG of the form given
in Eq. 1. If the density dependence of G1 on ,u is weaker than
that of G2 on ,u, one can obtain a situation with more than one
possible fixed point, as shown in Fig. 1. The associated
optimality function is depicted in Fig. lb, whereas g(,u) is
shown in Fig. ic.
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becomes relevant to ask how it spontaneously evolves into
a the global one.

2 We first note that in the absence of imperfect knowledge
G 1 \ the system would always stay in the relative minimum and

G /thus not adapt, for small excursions away from it reduce the
local payoffs. It is only in the case of imperfect knowledge
(i.e., wrong evaluation of the payoffs) that many agents can
change from one strategy to the other. This is because, in
evaluating the number of agents in the other strategy, imper-
fect knowledge amounts to the assumption that many have

b already moved. We therefore need to compute the time that
it takes for a large number ofthem to change strategies in such
a way so as to drive the system toward the new optimality

Q \ h minimum.
Such a calculation, analogous to particle decay in a bistable

potential or to phase nucleation in thermodynamics, has been
performed many times in the past, and the answer can be
found in textbooks (see, for example, ref. 9; for an earlier
calculation in the context of Ising models with infinite range

C interactions, see ref. 10). For a system with very long-range
interactions, as is the case of agents in a computational

9 ecology, the time, t, it takes for N agents to cross over from
a metastable ESS to the optimal one is given by

t = constant e(ONh) [11]

.-17 ~~ 1 with h the height of the barrier, as shown in Fig. lb.
Therefore, for any large system with a finite amount of

FIG. 1. (a) Payoffs for a heterogeneous open system with two imperfect knowledge, this time becomes infinite, making the
types of resources, inducing different density dependence. (b) The metastable state effectively stable. When large fluctuations
associated optimality function. (c) Derivative of optimality function do appear, however, the transit time from one minimum to
and associated dynamical flows. the other is proportional to the logarithm of the number of

agents, making this transition effectively instantaneous when
Given any initial strategy mix, the system will quickly compared to the actual time to produce the large fluctuation.

settle into the nearby minimum, which may or may not be the Such a process is clearly illustrated in Fig. 2, where we
optimal one. The interesting case occurs when, due to depict the results of a simulation by Kephart et al. (14) of a
changes in either constraints or initial characteristics, a given system with 10 agents capable of engaging in two strategies
locally stable strategy is not an absolute minimum, for it then and with an overall payoff function of the form shown in Fig.

1.0-

0.0
0.0 100.0 200.0

Time

FIG. 2. Computer simulation of the evolution of a system with 10 agents asynchronously updating their choices among two strategies. The
ordinate depicts the measured fraction of agents engaged in a given strategy mix for a system with the payoffs of Fig. 1. The x axis corresponds
to time. The initial configuration has all agents in a pure strategy with a local minimum in the optimality function. Notice the small fluctuations
before the sharp transition, due to the small size of the system.
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3446 Applied Mathematics: Ceccatto and Huberman

la. With all agents initially engaged in a strategy correspond-
ing to the nonglobal minimum, the simulation monitored the
fraction of agents, f, engaging in a given strategy mix as a
function time. As can be seen, the system remained in the
original configuration (i.e., f = 0) for a long time and made
a very sharp transition to the optimal strategy mix (f = 0.85)
in spite of its small size.

This scenario, which is very similar to that of punctuated
equilibria in evolution (11-13), has a number of interesting
implications. A most important one is that a large collection
of computational agents in an open system will not sponta-
neously generate adaptive behavior when the introduction of
novel constraints produces metastable configurations. In
such situations, a global agent has to exist in order to (i)
become aware of the advantage produced by another fixed
point and (ii) to induce a coordinated action whereby pro-
cesses simultaneously change their ESS. Without it, the
evolution of open computational systems would be charac-
terized by a number ofunproductive strategy mixes with very
few and rare collective transitions into more adapted ones.
This lack of adaptability could pose serious disadvantages
when compared to systems that either evolve with the help of
global agents or are in close proximity to more optimal ESS.
When considering the implications of these results for

biological or social organizations, an important point to
notice is the effective range of the interactions among agents.
For short-range ones, the time to escape a metastable ESS is
much shorter than the one calculated above. This is because
short-range interactions render the population with which an
agent communicates effectively smaller, thus leading to a
significant decrease in the value ofN entering the exponential
of Eq. 11. For long-range communications, however, the
effects of a local change in the strategy mix are broadcasted
to all agents of the system, thereby making the effective
radius of the nucleating droplet infinite and leading to the
effects we discussed above. To the extent that a large
community of social agents can have long-range interactions,
and if no other mechanisms exist to lower optimality barriers,
one would expect it to display nonadaptive behavior in the
absence of global processes. This would not be so, however,
for systems that are modularly organized into smaller and
nearly independent units. In this case, an effective dynamical
hierarchy appears as agents inside the units communicate
with each other on shorter time scales than those involving

agents belonging to different units. This leads in turn to
effective cluster sizes small enough to spontaneously nucle-
ate the global ESS at faster rates than the ones calculated in
this paper.

Finally, we expect that similar metastable effects exist in
complex dynamical systems with more complicated fixed
points, such as oscillatory states or chaotic orbits, with the
attractors playing the role of the local minima in the opti-
mality function. In these cases, the crossover from metasta-
ble local attractors to globally stable ones will be long enough
so as to make the system appear effectively frozen in given
dynamical configurations.
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